大数据新范式:MLOps到底是什么?
这意味着,预测或分类的实际结果不仅取决于数据科学家提出的神经网络架构和机器学习方法,还取决于开发团队如何实现这一模型,以及管理员如何在集群环境中部署这一模型。输入数据的质量,接收数据的来源、渠道和频率也很重要,这都属于数据工程师的职责范围。 在机器学习解决方案的开发、测试、部署和支持过程中,多学科专家在互动中会遇到许多组织难题和技术障碍,这不仅延长了产品创建的时间,还降低了产品带给该项业务的实际价值。 为了消除这些障碍,MLOps这一概念应运而生。与DevOps和DataOps类似,MLOps旨在提高自动化程度和工业机器学习解决方案的质量,同时兼顾监管需求和业务利益。 因此,MLOps是结合系统开发和运营支持(包括集成、测试、发布、部署、基础设施管理等操作),以实现机器学习系统生命周期复合化和自动化管理的文化理念和应用实例。 可以说,MLOps借助敏捷的方法和技术工具扩展了CRISP-DM方法论(CRISP-DM跨行业数据挖掘标准流程),从而可以自动执行包括数据、机器学习模型、代码和环境在内的操作。 这些工具中包括了Cloudera公司的数据科学工作台——ClouderaData Science Workbench,将MLOps付诸实践有助于数据科学家在CRISP-DM经典阶段规避常见陷阱和问题。 MLOps带给业务和数据科学的十大好处 实施MLOps带来的所有好处中,最为突出的是机器学习工业部署细节中的敏捷方法:
因此,使用MLOps可以优化以下机器学习操作: (编辑:揭阳站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |